

bq26200EVM-001 Single Cell Battery Monitor Evaluation Module

User's Guide

July 2002

PMP EVMs

SLUU118

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation kit being sold by TI is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this evaluation kit not meet the specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user **is not exclusive**.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 2.8 V–5.5 V and the output voltage range of 2.8 V–5.5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 70°C. The EVM is designed to operate properly with certain components above 70°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

Contents

1	bq26 1.1 1.2 1.3	200 Battery Monitor Evaluation Module Features Kit Contents Ordering Information	1-1 1-2 1-2 1-2
2	Circu	it Module	2-1
	2.1	Pin Descriptions	2-2
	2.2	Circuit Module Schematic	2-2
		2.2.1 Schematic	2-2
	2.3	Circuit Module Physical Layouts	2-3
		2.3.1 Board Layout	2-3
	2.4	Bill of Materials	2-5
	2.5	Performance Specification Summary	2-6
3	EVM	Hardware and Software Setup	3-1
	3.1	Software Installation	3-2
	3.2	Hardware Installation	3-2
		3.2.1 Connecting the bq26200EVM-001 Circuit Module to a Battery Pack	3-2
		3.2.2 PC Interface Connection	3-3
4	Opera	ation	4-1
	4.1	Starting the Program	4-2
	4.2	Initialization	4-2
		4.2.1 Setting Programmable bq26200 Options	4-2
		4.2.2 Register Clearing	4-3
	4.3	Reading and Writing Flash Memory	4-3
	4.4	RAM Addressing	4-4
	4.5	Data Logging	4-4

Figures

2–1	bq26200EVM-001 Schematic	2-2
2–2	bq26200EVM-001 Circuit Module Layouts	2-3
3–1	bq26200EVM-001 Circuit Module Connection to Cells and System Load/Charger	3-2
4–1	Initial Register Screen	4-2
4–2	Flash Register Screen	4-3
4–3	RAM Register Screen	4-4
4–4	Logging Screen	4-5
4–5	Logging Option Screen	4-5

Tables

1–1	Ordering Information	1-2
2–1	Bill of Materials	2-5
2–2	Performance Specification Summary	2-6
3–1	Circuit Module-to-EV2200 Connection	3-3

Chapter 1

bq26200 Battery Monitor Evaluation Module

The bq26200EVM-001 is a complete evaluation system for the bq26200 flashbased battery monitoring IC. The EVM includes one bq26200 circuit module, an EV2200 PC interface board for gas-gauge evaluation, a PC serial cable, and Windows-based PC software. The circuit module includes one bq26200 and all other components on-board necessary to monitor capacity and other critical parameters in a one-cell Li-Ion battery pack. The circuit module connects directly across the cell in a battery. With the EV2200 interface board and software, the user can read the bq26200 data registers and evaluate the functions of the bq26200 under different charge and discharge conditions.

Topic

Page

1.1	Features	1-2
1.2	Kit Contents	1-2
1.3	Ordering Information	1-2

1.1 Features

- Complete evaluation system for the bq26200 battery monitor IC
- Deputated circuit module for quick setup
- D PC software and interface board for easy evaluation
- □ Software allows data logging for system analysis

1.2 Kit Contents

- □ 1 bq26200 circuit module with sense resistor
- □ 1 EV2200 PC interface board
- □ 1 Set of evaluation software disks entitled EV2200–26200
- □ 1 PC serial cable
- □ 1 Set of support documentation

1.3 Ordering Information

Table 1–1. Ordering Information

EVM Part Number	Additional ICs	Chemistry	Pack Voltage	Capacity
bq26200EVM-001	None	Li-Ion/NiMH/NiCd	2.8 V–5.5 V	Any

Chapter 2

Circuit Module

The circuit module in the bq26200EVM-001 is a complete and compact example solution for battery monitoring of a single-cell Li-on pack. The circuit module incorporates a bq26200 battery monitor IC and all other components necessary to accurately protect and monitor the charge and discharge of one Li-Ion cell. This EVM can also be used for 3-series NiMH applications.

Contacts on the circuit module provide direct connection to the cell (BAT+, BAT–) and the serial communications port (HDQ).The system load and charger connect across PACK+ and PACK–.

Topic

Page

2.1	Pin Descriptions	2-2
2.2	Circuit Module Schematic	2-2
2.3	Circuit Module Physical Layouts	2-3
2.4	Bill of Materials	2-5
2.5	Performance Specification Summary	2-6

2.1 Pin Descriptions

BAT+/PACK+	Cell positive/pack positive
🗋 BAT–	Cell negative
D PACK-	Pack negative
🗋 HDQ	Serial communications port
STAT	Status output

2.2 Circuit Module Schematic

The schematic shows the circuit for the bq26200EVM-001 implementation.

2.2.1 Schematic

Figure 2–1 is the bq26200EVM-001 (SLUP154) circuit module schematic diagram.

Figure 2–1. bq26200EVM-001 Schematic

Note: R8, R9, and D2 are required for external use only.

2.3 Circuit Module Physical Layouts

This section contains the board layout and assembly drawings for the bq26200EVM-001 circuit module (SLUP154).

2.3.1 Board Layout

Figure 2–2 shows the PCB layers and assembly drawing for the circuit module.

Figure 2–2. bq26200EVM-001 Circuit Module Layouts

TOP ASSEMBLY

Figure 2–1. bq26200EVM-001 Circuit Module Layouts (Continued)

2.4 Bill of Materials

Table 2–1 lists materials required for the bq26200EVM–001 circuit module.

Ref Des	Qty-001	Description	MFG	MFG Part#	Size
PCB	1	Printed-circuit board, 0.031, FR4, SMOBC, HASL	Any		See FAB DWG
Terminal	2	Terminal block 3.5 mm	On Shore	ED555/2DS	3.5 mm imes 2
C1, C2, C3	3	Capacitor, ceramic, 0.1 μF , 16 V, ±10%, X7R	Panasonic	ECJ-1VB1C104K	603
R6	1	Resistor, 0.020 Ω, 1/2 W, 1%	ORC	LR2010-01-R020-F	2010
R1, R4, R5, R7	4	Resistor, 100 kΩ, 1/16 W, 5%	Panasonic	ERJ-3GSYJ104	603
R2, R3, R8, F9	4	Resistor, 100 Ω, 1/16 W, 5%	Venkel	ERJ-3GSYJ101	603
D1, D2	2	Diode, zener, 5.6 V	Zetex	BZX84C5V6	SPT-23
U1	1	Integrated circuit, gas gauge, bq26200PW	ТІ	bq26200PW	TSSOP-8
Component count	18				

Table 2–1. Bill of Materials

Assembly Notes:

1. This assembly is ESD sensitive.

2. This assembly must comply with IPC-A-610 class 2 or better.

3. This assembly must be clean of flux residues and contaminants.

4. Use of no-clean flux is not acceptable.

2.5 Performance Specification Summary

This section summarizes the performance specifications of the bq26200EVM-001 circuit module. Table 2–2 gives the performance specifications of the circuit.

Table 2–2. Performance Specification Summary

Specification	MIN	TYP MAX	UNIT
Input voltage BAT+/BAT-	2.8	5.5	V
Charge and discharge current		4	А

Note: Maximum charge and discharge current- is limited by the PCB design and power dissipation of the 20-m Ω , 1/2 W sense resistor included on the PCB.

Chapter 3

EVM Hardware and Software Setup

This section describes how to install the EV2200-26200 PC software and how to connect the components of the EVM.

Topi	; I	Page
3.1	Software Installation	. 3-2
3.2	Hardware Connection	. 3-2

3.1 Software Installation

The following steps install the EV2200-26200 software:

- 1) Insert disk 1 into a 3 1/2 inch floppy drive.
- 2) Select the 3 1/2 inch drive using My Computer.
- 3) Double-click on the **Setup.exe** icon.
- 4) The setup program prompts for the remaining disks and installs a Windows application group.

3.2 Hardware Installation

There are three hardware components to the bq26200EVM-001:

- 1) The bq26200EVM-001 circuit module
- 2) The EV2200 PC interface board
- 3) The PC

3.2.1 Connecting the bq26200EVM-001 Circuit Module to a Battery Pack

Figure 3–1 shows how to connect the bq26200EVM-001 circuit module to a Li-Ion cell and the system load/charger.

Figure 3–1. bq26200EVM-001 Circuit Module Connection to Cells and System Load/Charger

3.2.2 PC Interface Connection

The following steps configure the hardware for interface to the PC:

1) Connect bq26200EVM–001 to the EV2200 using wire leads as in the following table.

bq26200 Based Battery	EV2200
HDQ	SMBD/HDQ1
PACK-	VSS

2) Connect the PC serial cable to the EV2200 and the PC COM port.

The bq26200EVM-001 is now set up for operation.

Chapter 4

Operation

This chapter details the operation of the bq26200EVM-001 software.

Topic

Page

4.1	Starting the Program 4-2
4.2	Initialization
4.3	Reading and Writing Flash Memory 4-3
4.4	RAM Addressing 4-4
4.5	Data Logging 4-4

4.1 Starting the Program

Run EV2200–26200 from the **Start|Programs|Texas Instruments|bq26200 Battery Monitor** menu sequence. The software defaults to PC Com port 1 for communication. If the EV2200 is connected to Com port 1, the program should load and display the initial data screen.

bq26200 Battery	Monitor						_	
<u>File Options H</u> elp								
TEXAS INSTR	RUMENTS		REAL WORLD SIGNAL P	ROCE		I N	G [™] Discha	rge
	 -0		bq26200 STAT High SRP SRD OSC	00 02 01 11	1 00 26			
Registers	Addr	Name	Description	Binary	Hex	Dec	Total Decimal	Clr
	0x6E	DCRH	DISCHARGE COUNT REGISTER - HIGH BYTE	00000000	00	0	DCR=23	Clr
Ram	0x6D	DCRL	DISCHARGE COUNT REGISTER + LOW BYTE	00010111	17	23		
	0x6C	CCRH	CHARGE COUNT REGISTER - HIGH BYTE	00000000	00	0	CCR=0	Clr
Elach	0x6B	CCRL	CHARGE COUNT REGISTER + LOW BYTE	00000000	00	0		
	0x6A	SCRH	SELF-DISCHARGE COUNT REGISTER - HIGH BYTE	00000000	00	0	SCR=0	Clr
	0x69	SCRL	SELF-DISCHARGE COUNT REGISTER + LOW BYTE	00000000	00	0		
	0x68	DTCH	DISCHARGE TIMER COUNTER REGISTER - HIGH BYTE	00000000	00	0	DTC=78	Clr
	0x67	DTCL	DISCHARGE TIMER COUNTER REGISTER + LOW BYTE	01001110	4E	78		
	0x66	CTCH	CHARGE TIMER COUNTER REGISTER + HIGH BYTE	00000000	00	0	CTC=0	Clr
	0x65	CTCL	CHARGE TIMER COUNTER REGISTER + LOW BYTE	00000000	00	0		
Sleep	0x64	MODE/WOE	RSVD DREG STC STD WOE2WOE1WOE0 0	01001110	4E	78	woe=0.502 💌	
🗹 Scan	0x63	CLR	RSVD POR STAT CTC DTC SCR CCR DCR	01100000	60	96		AIL
	0x61	TEMPH	TEMPERATURE · HIGH BYTE	00000001	01	1	Temp(K)=297	
	0x60	TEMPL	TEMPERATURE - LOW BYTE	00101001	29	41		
Communication Status	ок			5/6/02	2	2	:22 PM	

If the EV2200 is connected to PC Com port 2 or no port, the program displays a blank screen in Binary, Hex, Dec, and Total Decimal columns.

Once the appropriate Com Port is selected, the program loads the initial register screen. The com port can be changed by selecting the port under the Options menu.

4.2 Initialization

This section describes the settings required before the bq26200 is evaluated.

4.2.1 Setting Programmable bq26200 Options

4.2.1.1 Wake-Up Threshold

Select the wake-up threshold with the **woe** pulldown tab at location 0x64. This designates the potential across the sense resistor, below which the bq26200 goes to sleep.

4.2.1.2 DREG Box

If no regulator is used, DREG bit at 0x64 location can be set by clicking the DREG box to reduce the device supply current. To reset, click the box again.

4.2.1.3 STAT Box

To turn off the STAT output, set the STAT pin by clicking STAT box at 0x63 location. To reset, click the box again.

4.2.2 Register Clearing

Each counter in the bq26200 can be cleared (set to 00) by depressing the adjacent **CIr** button.The **All** button clears all counting registers in one sequence.

4.3 Reading and Writing Flash Memory

The flash memory on the bq26200 can store battery-pack specific parameters that can be used by the host system in its capacity monitoring algorithm.

To read the flash memory, click on the **Flash** button to select the flash data screen. Click the **Read Flash** button to read all flash pages or click on the individual page number to read the pages individually.

Each flash location can be modified by clicking on the individual location and entering the new value in hex.

The flash values can be stored to disk as one data file.To do this, select **File|Save Flash File** and enter the file name in the **Store Flash File** window.The file can subsequently be opened using the the **File|Open Flash File** command from the pull down menu.Once the flash file is loaded into the program, the **Write Flash** button can be used to store the data in the bq26200.

bq26200 Battery File Options Help	Monitor																	
TEXAS INST	RUMENTS	F	RΕ	A L	W	O R I	D	Sι	GΝ	ΑL	Р	RO	СE	s s	I N	G [™] C	harg	ing
		ff REG VCC VSS HDQ	26200 S' S C	TAT RP RN ISC	High				23.85 Rom IC	*C D:	32 8C		•)	00 26				•
Registers		men len 🛆																
	Page	¥	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
Ram	1	2	AA	FF	FF	FF	FF	FF	FF	FF	FF	FF	AΑ	FF	FF	FF	FF	FF
Elash		3	FF	FF	FF	FF	FF	AA	FF	FF	FF	FF	FF	FF	FF	FF	FF	AA
		4	АА	FF	FF	FF	FF	FF	FF	FF	FF	FF	дд	FF	FF	FF	FF	FF
	2	5	FF	FF	FF	FF	FF	AA	FF	FF	FF	FF	FF	FF	FF	FF	FF	АА
	Click above to read a single page Read Flash	Write Flash		Clie	sk in a s	ingle gri	d cell to	edit. Pr	ess ente	erto upo	date flas	sh memo	эгу					
Communication Status	ок		_									5	/6/02		2	:42 PM	1	

Figure 4-2. Flash Register Screen

4.4 RAM Addressing

The RAM page of memory can be viewed by selecting the RAM data screen.

Click on the Read RAM button to read the RAM locations.

Each RAM location can be modified by clicking on the individual location and entering the new value in hex.

The RAM values can be stored to disk as one data file.To do this, select **File|Save RAM File** and enter the file name in the **Store Ram File** window.The file can subsequently be opened using the the **File|Open Ram File** command from the pulldown menu. Once the FLASH file is loaded into the program the **Write RAM** button can be used to store the data in the bq26200.

On this screen, two other buttons are available to transfer data RAM to flash page 0 and from flash page 0 to RAM.

Figure 4-3. RAM Register Screen

bq26200 Battery File Options Help	Monitor																- 🗆 ×
🐺 Texas Inst	RUMENTS		R	ΕA	L W	/ O R	LD	SI	GΝ	ΑL	PR	0 C	ΕS	SIN	G™	Charg	ing
			bq26 EG 'CC 'SS DQ	STA1 STA1 SRF SRN OSC					23.85 ROM ID	*C):	32 8C 0	-+ 0 02 01	11 00 2	6			
Registers	Page 0, 32 bytes of flash shadowed RAM																
	msn Isn →	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
Ram	0	AA	FF	FF	FF	FF	FF	FF	FF	FF	FF	AA	FF	FF	FF	FF	FF
Flash	1	FF	FF	FF	FF	FF	АА	FF	FF	FF	FF	FF	FF	FF	FF	FF	АА
		Click	in a singl	e grid cel	l to edit.	Press en	terto upo	late RAM	1				. 1				
	Head	HAM, L	isplay o	n Grid					rase, XI	rer HAM	to Flash	n Page I	,				
	~	√rite Gri	d to RAM	4		Xier Flash Page 0 to RAM											
Communication Status	οκ											5/6/	02		2:46 F	м	

4.5 Data Logging

The bq26200 registers can be logged by using the data log function. To log the data and create a log file

1) Select **Options|Logging Options** to select the registers to log and set the logging interval.

bq26200 Battery	Monitor				<u>_ </u>
<u>File</u> <u>Options</u> <u>H</u> elp					
Use Comm <u>1</u> Use Comm <u>2</u>	۹TS	5	REAL WORLD SIGNAL PRI	OCESS	ING [™]
Logging Optic		Off REG VCC VSS HDC	23.85 °C SRP SRP SRN OSC SRN OSC SRN SRN SRN SRN SRN SRN SRN SRN	+ 02 01 11 00 26	
Registers	Addr	Name	Description Bi	inary Hex	Dec Total Clr
	0x6E	DCRH	DISCHARGE.COUNT REGISTER - HIGH BYTE		Cir
Ram	0x6D	DCRL	DISCHARGE COUNT REGISTER + LOW BYTE		
	0x6C	CCRH	CHARGE COUNT REGISTER - HIGH BYTE 000	000000 00	0 CCR=3 Clr
Flack	0x6B	CCRL	CHARGE COUNT REGISTER - LOW BYTE 000	000011 03	3
	0x6A	SCRH	SELF-DISCHARGE COUNT REGISTER - HIGH BYTE 000	000000 00	0 SCR=0 Clr
	0x69	SCRL	SELF-DISCHARGE COUNT REGISTER - LOW BYTE 000	000000 00	0
1	0x68	DTCH	DISCHARGE TIMER COUNTER REGISTER + HIGH BYTE 000	000101 05	5 DTC=1395 Clr
	0x67	DTCL	DISCHARGE TIMER COUNTER REGISTER - LOW BYTE 011	110011 73	115
	0x66	CTCH	CHARGE TIMER COUNTER REGISTER - HIGH BYTE 000	000011 03	3 CTC=955 Clr
	0x65	CTCL	CHARGE TIMER COUNTER REGISTER + LOW BYTE 101	111011 BB	187
Sleep	0x64	MODE/WOE	RSVD DREG STC STD WOE2WOE1WOE0 0 010	001110 4E	78 woe=0.502 💌
🛛 🗹 Scan	0x63	CLR	RSVD POR STAT CTC DTC SCR CCR DCR 011	100000 60	96 All
	0x61	TEMPH	TEMPERATURE - HIGH BYTE 000	000001 01	1 Temp(K)=297
	0x60	TEMPL	TEMPERATURE - LOW BYTE 001	101001 29	41
Communication Status (эк			5/6/02	2:56 PM

Figure 4–4. Logging Screen

Figure 4–5. Logging Option Screen

bq26200 Battery	Monitor													_	
<u>File Options H</u> elp															
🐺 TEXAS INSTR	UMENT	s	REA	ι L	Wa	RL	D	SIO	G N A	L P	ROC	ESS	IN	G [™]	
	🖏 Loggir	ng Options									-+				_
<u>کی</u>	Regi	sters to Log							.85 °C DM ID:	32 8C	00 02 01 1	1 00 26		Ś	
1920	ü 🔍 🗋	CR 🔽	CTC	-) -		0	к							> `	$\overline{\gamma}$
Section 1	N	CR 🔽	MODE/V	/OE							\frown				
	. 🔽 S	CR 🔽	CLR			Car	ncel				$- \bigcirc$				
Registers		DTC 🔽	TEMP								Binary	Hex	Dec	Total Decimal	Clr
								Ē	ER - HIG	H BYTE					Clr
Ram	Logg	jing Interval (se	c)					h	ER - LO	W BYTE	00011010	1A	26		
	10		-					- k	ER · HIG	Н ВҮТЕ	00000000	00	0	CCR=3	Clr
Flack								h	ER - LO	W BYTE	00000011	03	3		
	0x6A	SCRH	ę	SELF-DI	SCHA	RGE CO	UNT R	EGIST	ER · HIG	Н ВҮТЕ	00000000	00	0	SCR=0	Clr
	0x69	SCRL	1	SELF-DI	ISCHA	RGE CO	UNT F	REGIST	ER - LOV	W BYTE	00000000	00	0		
	0x68	DTCH	DISC	HARGE	TIME	R COUN	TER R	EGIST	ER - HIG	Н ВҮТЕ	00000101	05	5	DTC=1395	Clr
	0x67	DTCL	DISC	HARGE	TIME	R COUN	ITER F	REGIST	ER - LOV	W BYTE	01110011	73	115		
	0x66	CTCH	C	HARGE	TIME	R COUN	TER R	EGIST	ER - HIG	Н ВҮТЕ	00000011	03	3	CTC=955	Clr
	0x65	CTCL	C	HARGE	TIME	R COUN	ITER F	REGIST	ER - LOV	W BYTE	10111011	BB	187		
Sleep	0x64	MODE/WOE	RSVD	DREG	STC	STD	WOE:	2w01	E1 WOEO	0	01001110	4E	78	woe=0.502 💌	
🗹 Scan	0x63	CLR	RSVD	POR 🛛	STAT	СТС	DTC	SCF	R CCR	DCR	01100000	60	96		All
	0x61	TEMPH					темре	RATU	RE - HIG	Н ВҮТЕ	00000001	01	1	Temp(K)=297	
	0x60	TEMPL					темр	ERATU	JRE - LOV	W BYTE	00101001	29	41		
Communication Status 0	ж										5/6/0	2		2:58 PM	

- 2) File|Start Data Log from the pulldown menu.
- 3) Enter the name of the data log file in the **Name Datalog File** box
- 4) Click on the **Open** button
- 5) To stop the data logging, select **File|Close Data Log** from the pulldown menu

The file can be imported into a text editor, spreadsheet, or word processor program.

Example data log:

EV2200-26200 Version: 0.0.1

Texas Instruments bq26200 battery monitor

5/6/02 3:04:23 PM ROM ID: 32 8C 00 02 01 11 00 26

Sample	Stamp	Elapsed(s)	DCR	CCR	SCR	DTC	CTC	MODE/WOE	CLR	TEMP
1	3:04:33 PM	10	27	3	0	2008	955	78	96	297
2	3:04:43 PM	20	27	3	0	2008	955	78	96	297
3	3:04:53 PM	30	27	3	0	2008	955	78	96	297
4	3:05:03 PM	40	27	3	0	2008	955	78	96	297
5	3:05:13 PM	50	27	3	0	2053	955	78	96	297
6	3:05:23 PM	60	27	3	0	2063	955	78	96	297
7	3:05:33 PM	70	27	3	0	2074	955	78	96	297
8	3:05:43 PM	80	27	3	0	2086	955	78	96	297
9	3:05:53 PM	90	27	3	0	2098	955	78	96	297
10	3:06:03 PM	100	27	3	0	21–7	955	78	96	297
11	3:06:13 PM	110	27	3	0	2123	955	78	96	297
12	3:06:23 PM	120	27	3	0	2134	955	78	96	297